
www.manaraa.com

RESEARCH ARTICLE

Tailoring the Implementation of New
Biomarkers Based on Their Added Predictive
Value in Subgroups of Individuals
A. van Giessen1*, K. G. M. Moons1, G. A. de Wit1,2, W. M. M. Verschuren1,2,
J. M. A. Boer2, H. Koffijberg1

1 Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, The Netherlands,
2National Institute for Public Health and the Environment, Bilthoven, The Netherlands

* a.vangiessen@umcutrecht.nl

Abstract

Background

The value of new biomarkers or imaging tests, when added to a prediction model, is current-

ly evaluated using reclassification measures, such as the net reclassification improvement

(NRI). However, these measures only provide an estimate of improved reclassification at

population level. We present a straightforward approach to characterize subgroups of re-

classified individuals in order to tailor implementation of a new prediction model to individu-

als expected to benefit from it.

Methods

In a large Dutch population cohort (n = 21,992) we classified individuals to low (<5%) and

high (�5%) fatal cardiovascular disease risk by the Framingham risk score (FRS) and re-

classified them based on the systematic coronary risk evaluation (SCORE). Subsequently,

we characterized the reclassified individuals and, in case of heterogeneity, applied cluster

analysis to identify and characterize subgroups. These characterizations were used to se-

lect individuals expected to benefit from implementation of SCORE.

Results

Reclassification after applying SCORE in all individuals resulted in an NRI of 5.00%

(95% CI [-0.53%; 11.50%]) within the events, 0.06% (95% CI [-0.08%; 0.22%]) within the

nonevents, and a total NRI of 0.051 (95% CI [-0.004; 0.116]). Among the correctly down-

ward reclassified individuals cluster analysis identified three subgroups. Using the charac-

terizations of the typically correctly reclassified individuals, implementing SCORE only in

individuals expected to benefit (n = 2,707,12.3%) improved the NRI to 5.32% (95% CI

[-0.13%; 12.06%]) within the events, 0.24% (95% CI [0.10%; 0.36%]) within the nonevents,

and a total NRI of 0.055 (95% CI [0.001; 0.123]). Overall, the risk levels for individuals re-

classified by tailored implementation of SCORE were more accurate.
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Discussion

In our empirical example the presented approach successfully characterized subgroups of

reclassified individuals that could be used to improve reclassification and reduce implemen-

tation burden. In particular when newly added biomarkers or imaging tests are costly or bur-

densome such a tailored implementation strategy may save resources and improve (cost-)

effectiveness.

Introduction
Prediction models are increasingly used as an aid in making medical decisions concerning di-
agnostic, therapeutic and preventive management. In the past three decades many new predic-
tion models have been developed with the aim to improve on existing models. In addition,
many existing models have been extended or updated by adding new risk predictors, such as
biomarkers or imaging tests, updating predictor weights, or tailoring coefficients to certain
populations [1–3].

Prior to potential implementation, a new or extended prediction model ought to be evaluat-
ed in several stages (Fig. 1) [4–7]. First, its performance is commonly assessed by measures of
discrimination and calibration [8]. Subsequently, it is essential to evaluate the incremental
value of the new model, as compared to the existing model [9]. Several incremental perfor-
mance measures are available, such as the difference in the area under the receiver operating
characteristic curve, net reclassification improvement (NRI) and integrated discrimination im-
provement [10]. All these measures give indication of the average improved performance of a
new or extended prediction model. However, favourable performance of one prediction model
over the other may be the result of improved predictions in one (larger) group of individuals
and similar or worse predictions in another group. On top of some individuals receiving worse
predictions, performing additional tests in every individual may be undesirable, because of
costs and invasiveness of such tests. Hence, there is a clear need to select individuals who actu-
ally benefit from a new prediction model, possibly including additional biomarkers or tests.

One way of selecting of individuals is to identify those for whom risk prediction will be im-
proved by application of a new model or addition of tests, for instance through optimization of
a window of prediction values [11]. However, more accurate prediction does not result in im-
proved health outcomes if it does not lead to improved patient management. Recent prediction
research and literature have clearly adopted this view through the use of the NRI to compare
the performance of different prediction models and evaluate the added value of novel risk pre-
dictors [8, 9, 12]. Despite its drawbacks the NRI is widely used because of its clinical relevance,
as it indicates to what extent a new prediction model improves classification of subjects (with
and without the event under study) compared to an existing prediction model, and is therefore
likely to also improve treatment decisions, given fixed treatment thresholds [4, 13, 14]. The ap-
proach to selection of individuals proposed here follows and expands this focus on improving
treatment decisions.

We propose an additional step when evaluating a new prediction model or risk predictor: to
further characterize (subgroups of) reclassified individuals using cluster analysis (Fig. 1). Hav-
ing additional information on what types of individuals are correctly reclassified indicates who
might benefit when introducing a new prediction model or risk predictor. Such knowledge of
reclassification impact on subgroup level allows tailored implementation of new prediction
models, biomarkers or imaging tests, by applying them only in subgroups of individuals
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expected to benefit from it, which may improve (cost-)effectiveness of risk-based strategies
(Fig. 2).

Subgroups expected to benefit can be identified for any possible adaptation of a prediction
model, such as additional biomarkers or imaging tests, but also the introduction of a new pre-
diction model. In this study, we use an empirical example of the latter situation, comparing car-
diovascular disease (CVD) risk prediction by two competing risk scores; the Framingham risk
score (FRS) and the Systematic Coronary Risk Evaluation (SCORE), to demonstrate the feasi-
bility of our approach [15]. The FRS for CVD risk prediction was developed in 1991 [15]. Since
then, model updates have been done and completely new models have been developed, such as
the Prospective Cardiovascular Münster (PROCAM) score, the QRESEARCH cardiovascular
risk (QRISK) algorithms, and SCORE [2, 3], [16–18]. The incremental performance of SCORE
compared to the FRS has been assessed in previous studies, mostly in favor of SCORE [19], but
it is unclear which individuals have benefit from these new prediction models. Using data from
a large prospective cohort study we evaluate the incremental performance of SCORE as com-
pared to the FRS and illustrate how to characterize the individuals that are correctly and incor-
rectly reclassified when replacing the FRS with SCORE [20]. Furthermore, we demonstrate
how these subgroup characterizations may be used for tailored implementation of a new pre-
diction model only in subgroups of individuals expected to benefit.

Methods

Identification and characterization of reclassified subgroups
Using individual participant data (IPD), predicted risks per individual according to an existing
and new prediction model can be assessed as well as their performance and incremental

Figure 1. Evaluation process of a new predictionmodel. Abbreviations: AUC = Area Under the (ROC-) Curve, NRI = Net Reclassification Improvement,
IDI = Integrative Discrimination Improvement.

doi:10.1371/journal.pone.0114020.g001
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performance [8]. Predefined risk categories, preferably recommended by guidelines [12], then
allow for estimation of the number of individuals being reclassified, correctly or incorrectly,
and reclassification measures. Evaluating which individuals are expected to benefit from addi-
tional biomarkers or a new prediction model, we aim to characterize the correctly reclassified
individuals (Fig. 2). When evaluating an additional (non-correlated) predictor this may be a
rather homogenous group, which allows it to be characterized by a single (set of) characteristic
(s). In case of the addition of multiple or correlated biomarkers, or comparison with a new pre-
diction model, the group of correctly reclassified individuals may be very heterogeneous. In
this case, for sufficiently large groups of reclassified individuals more homogenous subgroups
can be identified, for example by application of cluster analysis, allowing characterization.

In brief, cluster analysis methods explore data to discover clusters, i.e. subgroups, of individ-
uals who are similar to each other and different from individuals in other clusters as defined by
a similarity measure [21–23]. No general best approach to cluster analysis exists and choices re-
garding the clustering method should be made dependent on features of the data [21]. Given
that different choices in e.g. similarity measure or number of clusters may lead to differences in
the (number of) detected clusters, cluster validation is essential in finding the clustering that
best fits the underlying data [24, 25]. Cluster validation can be performed by assessing the qual-
ity of the cluster solution, i.e., the identified set of clusters, and by comparison with cluster

Figure 2. The added value of identifying and characterizing reclassified subgroups. This figure shows that at level 1, assessing the incremental
performance, a new prediction model or risk predictor may be selected for implementation in the general population. At level 2, the correctly reclassified
individuals are inspected. The additional step, level 3, of identification and characterization of typically reclassified subgroups allows for more informed
decision and provides evidence for possible tailored implementation. Actual implementation will then depend on the effectiveness and cost-effectiveness
per subgroup.

doi:10.1371/journal.pone.0114020.g002
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solutions obtained when replicating the analysis on different (sub)samples of the data to assess
the robustness of the solution [21].

Based on the characterizations of the correctly reclassified subgroups, similar individuals,
expected to benefit from a new prediction model (or additional biomarker or imaging test), can
be selected. Many methods of selecting these individuals exist, where one simple way is just by
evaluating if their characteristics appear to match the ranges of characteristics observed in the
correctly reclassified subgroups. The implementation of the new prediction model can then be
tailored by applying it only to these selected individuals who are expected to benefit.

Characterization of reclassified subgroups when replacing the FRS with
SCORE
Our empirical illustration, which aims to characterize the individuals reclassified if their FRS-
based risk estimate is replaced by a SCORE-based risk estimate, uses data from ‘The Monitor-
ing Project on Chronic Disease Risk Factors’ (MORGEN). This large-scale monitoring project
was carried out between 1993 and 1997 among men and women living in Amsterdam, Doe-
tinchem and Maastricht, The Netherlands [20]. From this cohort (n = 21,992) we excluded in-
dividuals with prevalent cardiovascular disease (n = 264) and those who have not given
informed consent (n = 1,435) for linkage to registry data (not mutually exclusive). As our aim
was only to provide an illustration of the approach, and not so much to choose between the
two risk models for the Dutch situation, individuals with any missing value (n = 658) were
also excluded.

The FRS for fatal CVD risk includes the predictors gender, age, systolic blood pressure
(SBP), total cholesterol (TC), HDL-cholesterol (HDL-C), presence of left ventricular hypertro-
phy on an electrocardiogram (ECG-LVH), and smoking and diabetes status [15]. Information
on ECG-LVH was not available and was set to ‘absent’ given the low prevalence (2.9% of men
and 1.5% of women in the Framingham Heart Study) [26]. As incremental performance, and
especially reclassification measures, are dependent on the calibration of the model in the IPD
[27], we calibrated the FRS to the MORGEN cohort (see S1 Text. Definition of fatal cardiovas-
cular events for definition of fatal CVD, see S2 Text. Prediction model performance for dis-
crimination and calibration details) [15, 28]. The calibrated FRS was used to calculate the
predicted 10-year fatal CVD risk for each individual in the MORGEN cohort (9,168 men and
10,947 women. Finally, individuals were classified into the low (<5%) and high (�5%) risk cat-
egory [29].

SCORE exists of two different models; SCORE-high and SCORE-low, both using the predic-
tors gender, age, SBP, TC, and smoking status [18]. Here we used the SCORE-low model, be-
cause it had the best calibration on the Dutch population, similar to the MORGEN cohort, in
previous studies [30]. Recalibration was not necessary (see S2 Text. Prediction model perfor-
mance for discrimination and calibration details). The fatal CVD risk for each individual was
then calculated using SCORE-low and individuals were again classified into the low and high-
risk category. Subsequently, the numbers of correctly and incorrectly upward and downward
reclassified individuals across the defined risk categories were assessed and the survival
(or prospective) NRI, using Kaplan-Meier estimates for censored observations, was calculated
[18, 29, 31].

Cluster analysis was then applied to the reclassified groups of substantial size to identify
which subgroups of individuals were typically reclassified. We applied the TwoStep Cluster
method, available in SPSS, using a likelihood similarity measure, which can handle a mix of
continuous and discrete variables, present in both prediction models [32–34]. To improve clus-
ter solution stability we included at most k variables if a group of reclassified individuals
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contained at least 2k individuals [35]. We selected these k variables from the predictors present
in both the FRS and SCORE and used backward selection to eliminate those variables with the
lowest importance for clustering. We used the Bayesian Information Criterion (BIC) to select
the number of clusters and applied an outlier detection setting of 25%.

The quality of the cluster solutions was assessed using the average silhouette width, where a
good (0.5;1], fair (0.25;0.5] or poor [-1;0.25] value indicates that strong, weak or no substantial
structure, respectively, has been found [23, 32]. Robustness was assessed by replicating the
analysis using 1,000 bootstrap datasets [36–38]. To compare the original subgroups to sub-
groups identified in bootstrap samples, the adjusted Rand index was calculated for each sample
using R and themclust package [21, 39–41]. For randomly chosen subgroups this index would
have value 0, whereas for perfectly identical subgroups its value would be 1.

Tailored implementation of SCORE in subgroups expected to benefit
Based on the characterizations of the subgroups of correctly reclassified individuals matching
individuals were selected. Individuals are selected if they fulfill the multivariate criterion of hav-
ing equal binary risk factor values (gender, smoking, and diabetes) and having continuous risk
factor values (age, SBP, TC and HDL-C) all falling within the range of 2 standard deviations of
the corresponding mean values for one of the correctly reclassified subgroups. If a subgroup
cannot be characterized by a binary risk factor, for instance because it consists of 75% smokers,
this characteristic was not incorporated into the selection criterion.

Implementation of SCORE-low was then tailored to those individuals who are expected
to benefit by applying it only to the selected individuals, i.e. those who could be classified to
one of the defined subgroups. Subsequently, the numbers of correctly and incorrectly upward
and downward reclassified individuals across the defined risk categories were reassessed and
the (survival type) NRI was recalculated. We used bootstrapping (n = 1,000) to repeat the selec-
tion of individuals and to estimate confidence intervals of the NRI of the
tailored implementation.

Results

Initial reclassification results
The recalibrated FRS classified 19,745 individuals into the low (<5%) and 370 individuals into
the high-risk category (�5%). SCORE-low classified 19,755 individuals into the low and 360
individuals into the high-risk category. Replacing the recalibrated FRS with SCORE-low, 234
individuals were reclassified of which 8 upward and 2 downward within the events and 104 up-
ward and 120 downward within the non-events (table 1). This resulted in an NRI of 5.00%
(95% CI [-0.53%;11.50%]) within the events, 0.06% (95% CI [-0.08%;0.22%]) within the non-
events, and a total NRI of 0.051 (95% CI [-0.004;0.116]).

Characterization and cluster analysis of reclassified individuals
Overall, the groups of reclassified individuals contained large variation in risk factor levels
(table 2). Given their small size, the incorrectly downward reclassified group (n = 2, table 2D)
was not further subdivided and the correctly upward reclassified group (n = 8, table 2A) was
only subdivided in men and women. Cluster analysis was performed on the 104 incorrectly up-
ward and 120 correctly downward reclassified individuals (table 2B, C). Both groups contained
sufficient individuals to include six risk factors in the cluster analysis. The five predictors pres-
ent in both the FRS and SCORE-low were used as well as diabetes status, selected by its cluster
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predictor importance. In both reclassified groups the BIC selected 3 clusters, outliers were
not detected.

The clusters are clearly distinct in certain risk factors, whereas in others differences may be
less apparent (table 2). Among the incorrectly upward reclassified individuals subgroup B1
(27.9%) consisted of nonsmoking, non-diabetic men with high mean SBP (table 2B). Subgroup
B2 made up 14.4% and contained non-diabetic, women with high mean SBP and TC. Finally,
the large subgroup B3 (57.7%) consisted of smoking men, who were on average younger
than the other subgroups and had much lower SBP. Among the correctly downward reclassi-
fied individuals a large subgroup, C1 (41.7%), consisted of non-smoking, non-diabetic men
(table 2C). Subgroup C2 made up 24.2% and contained individuals almost all having diabetes
and among whom smoking was common (41.4%). Finally, subgroup C3 (34.2%) consisted of
smoking men, who were on average younger than the other subgroups and had much lower
SBP. A full characterization and validation results of the subgroups can be found in table 2 and
S3 Text. Characterization and validation of identified subgroups.

Tailored implementation to subgroups
Based on the characteristics of the correctly reclassified subgroups (table 2), 2,707 (12.3%) indi-
viduals in our cohort fulfilled the multivariate criterion of having equal binary risk factors and
all continuous risk factor values within the range of 2 standard deviations of the means of (at
least) one of the correctly reclassified subgroups. The selection consisted of 764 individuals
complying with the ranges of subgroup A1, and 196, 482, 1,068, and 197 complying with the
ranges of subgroups A2, C1, C2, and C3, respectively (not mutually exclusive). Hence, these in-
dividuals were selected for tailored implementation. They contained 90.8% of the originally
correctly downward and all correctly upward reclassified individuals as well as all incorrectly
downward and 57.7% of the incorrectly upward reclassified individuals when SCORE-low was
applied to every individual in the MORGEN cohort.

Table 1. Reclassification with SCORE-low instead of FRS in all individuals.

Without events SCORE-low Total without events Number (%)

Recalibrated FRS Low-risk (<5%) High-risk (�5%) No change 19,771 (98.88%)

Low-risk (<5%) 19,537 104 Up classification 104 (0.52%)

High-risk (�5%) 120 234 Down classification 120 (0.60%)

With events SCORE-low Total with events Number (%)

Recalibrated FRS Low-risk (<5%) High-risk (�5%) No change 110 (91.67%)

Low-risk (<5%) 96 8 Up classification 8 (6.67%)

High-risk (�5%) 2 14 Down classification 2 (1.67%)

Observed KM estimates SCORE-low All individuals Number (%)

Recalibrated FRS Low-risk (<5%) High-risk (�5%) No change 19,881 (98.84%)

Low-risk (<5%) 0.29% 4.58% Up classification 112 (0.56%)

High-risk (�5%) 1.27% 3.76% Down classification 122 (0.61%)

Abbreviations: FRS = Framingham Risk Score, KM = Kaplan Meier

This table shows the distribution of the 20,115 individuals with and without events in the MORGEN-cohort across risk categories. Individuals with and

without events were all classified according to their 10-year absolute risk to develop a fatal cardiovascular disease event with the Framingham Risk Score

or all classified with SCORE-low. The bottom rows show the observed 10-year Kaplan-Meier absolute risk estimates for all individuals (with and without

events).

doi:10.1371/journal.pone.0114020.t001
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Reclassification results after tailored implementation
Applying SCORE-low instead of the recalibrated FRS only in the 2,707 selected individuals
(12.3%), 170 individuals were reclassified of which 8 upward and 2 downward within the
events and 60 upward and 109 downward within the non-events (table 3). This resulted in an
NRI of 5.32% (95% CI [-0.13%;12.06%]) within the events, 0.24% (95% CI [0.10%;0.36%])
within the nonevents, and a total NRI of 0.055 (95% CI [0.001;0.123]). Overall, the risk levels
for individuals reclassified by tailored implementation of SCORE were more accurate (table 3).

Discussion
This study shows that application of cluster analysis is a feasible approach to characterize sub-
groups of reclassified individuals, taking evaluation of prediction models beyond

Table 2. Characterizations of reclassified individuals from the MORGEN cohort.

A. Subgroups of correctly upward reclassified individuals (n = 8) a

Subgroup # individuals Male Age (yrs) TC (mmol/L) SBP (mmhg) Smoking Diabetes HDL-C (mmol/L) Predicted
FRS risk (%)

mean (SD) mean (SD) mean (SD) mean (SD) mean (SD)

Total 8 (100%) 50.0% 61.3 (4.1) 6.1 (1.2) 150.0 (19.9) 75.0% 0.0% 1.3 (0.2) 4.4 (0.7)

A1 4 (50.0%) 100.0% 58.7 (4.3) 6.2 (1.7) 141.8 (16.6) 75.0% 0.0% 1.2 (0.1) 4.8 (0.1)

A2 4 (50.0) 0.0% 64.0 (1.4) 6.1 (0.8) 158.3 (21.6) 75.0% 0.0% 1.4 (0.3) 4.1 (0.9)

B. Subgroups of incorrectly upward reclassified individuals (n = 104)

Subgroup # individuals Male Age (yrs) TC (mmol/L) SBP (mmhg) Smoking Diabetes HDL-Cb (mmol/L) Predicted
FRS risk (%)

mean (SD) mean (SD) mean (SD) mean (SD) mean (SD)

Total 104 (100%) 85.6% 59.4 (3.7) 6.1 (1.1) 152.7 (24.5) 65.4% 9.6% 1.6 (0.4) 4.0 (0.8)

B1 29 (27.9%) 100.0% 60.6 (2.9) 5.8 (1.1) 166.9 (17.5) 0.0% 0.0% 1.6 (0.4) 4.0 (0.8)

B2 15 (14.4%) 0.0% 62.2 (2.8) 7.0 (1.2) 169.2 (29.3) 53.3% 0.0% 1.6 (0.4) 3.7 (0.6)

B3 60 (57.7%) 100.0% 58.1 (3.8) 6.0 (1.0) 141.7 (20.1) 100.0% 12.9% 1.5 (0.5) 4.0 (0.8)

C. Subgroups of correctly downward reclassified individuals (n = 120)

Subgroup # individuals Male Age (yrs) TC (mmol/L) SBP (mmhg) Smoking Diabetes HDL-Cb (mmol/L) Predicted
FRS risk (%)

mean (SD) mean (SD) mean (SD) mean (SD) mean (SD)

Total 120 (100%) 84.4% 58.1 (3.8) 6.2 (1.2) 145.4 (16.0) 44.2% 20.8% 0.9 (0.2) 6.3 (1.7)

C1 50 (41.7%) 100.0% 60.0 (3.3) 6.1 (1.0) 148.0 (13.5) 0.0% 0.0% 0.9 (0.2) 6.0 (1.0)

C2 29 (24.2%) 34.5% 58.5 (3.0) 6.2 (1.3) 153.8 (16.8) 41.4% 86.2% 0.9 (0.2) 7.2 (2.3)

C3 41 (34.2%) 100.0% 55.5 (3.4) 6.2 (1.3) 136.4 (14.0) 100.0% 0.0% 0.8 (0.1) 5.9 (1.8)

D. Subgroups of incorrectly downward reclassified individuals (n = 2) c

Subgroup # individuals Male Age (yrs) TC (mmol/L) SBP (mmhg) Smoking Diabetes HDL-C (mmol/L) Predicted
FRS risk (%)

Total 2 (100%) [1;1] [58.4;57.9] [5.3;6.9] [162;157] 0.0% 0.0% [0.8;1.0] [6.2;5.5]

Abbreviations: TC = total cholesterol, HDL-C = HDL-cholesterol, SBP = systolic blood pressure.

Characteristics for the total reclassified groups and each subgroup are given as the mean (standard deviation) for continuous risk factors and as

percentage for the dichotomous variables. For consistency, this representations was used for every group. However, for small groups these values may

be uncertain.
a.The group of correctly upward reclassified individuals was, because of its small size, only subdivided in men and women.
b.HDL-C was not used in the cluster analysis.
c.Since the group of incorrectly downward reclassified individuals only included two individuals it was not further subdivided and parameter values were

given for both individuals instead of means and standard deviations.

doi:10.1371/journal.pone.0114020.t002
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reclassification tables and measures. Furthermore, the characterized subgroups can be used as
the starting point for evidence-based tailored implementation of new prediction models, bio-
markers and tests, as demonstrated in our empirical example. This approach can be applied to
any reclassification result, using nested or non-nested models, with the correctly reclassified
subgroups providing information useful to select individuals expected to benefit from the new
model, and the incorrectly reclassified subgroups providing information useful to exclude indi-
viduals from the new model.

Here, we focused on individuals expected to benefit from the new model only, as in practice
new biomarkers and tests quite often are costly or potentially burdensome for individuals
(Fig. 2). In such a context, limiting their application to individuals that may be expected to ac-
tually benefit from them will save costs and may reduce health loss by reducing unnecessary
use. In addition, the characterization of reclassified subgroups may also encourage tailored pre-
diction model development and impact studies of prediction models on health outcomes (and
cost-effectiveness of care) may provide more accurate results when accounting for the identi-
fied characteristics of reclassified subgroups instead of assuming that all reclassified individuals
are similar [6, 42, 43].

When tailoring the implementation of a new prediction model to selected subgroups of indi-
viduals expected to benefit, the proportion of these individuals that will indeed be correctly re-
classified depends on two factors. First, for two individuals with a similar risk profile it is possible
that the new model reclassifies one of these individuals correctly and one incorrectly. Conse-
quently, there may be individuals that match the characterization of a correctly reclassified sub-
group, but are themselves incorrectly reclassified. However, our selection criterion is based only
on the subgroup characterizations of correctly reclassified individuals. Therefore, applying the
new model in individuals matching these characterizations is likely to yield a (much) better bal-
ance of correctly reclassified and incorrectly reclassified individuals than applying the new model
in everyone. Second, this proportion will depend on the strictness of the selection criterion. In
our illustration, we chose a range of 2 standard deviations. Narrowing this to, for instance, 1 stan-
dard deviation will select fewer individuals and is likely to further improve the balance between

Table 3. Reclassification with SCORE-low instead of FRS in subgroups expected to benefit.

Without events SCORE-low Total without events Number (%)

Recalibrated FRS Low-risk (<5%) High-risk (�5%) No change 19,826 (99.16%)

Low-risk (<5%) 19,581 60 Up classification 60 (0.30%)

High-risk (�5%) 109 245 Down classification 109 (0.55%)

With events SCORE-low Total with events Number (%)

Recalibrated FRS Low-risk (<5%) High-risk (�5%) No change 110 (91.67%)

Low-risk (<5%) 96 8 Up classification 8 (6.67%)

High-risk (�5%) 2 14 Down classification 2 (1.67%)

Observed KM estimates SCORE-low All individuals Number (%)

Recalibrated FRS Low-risk (<5%) High-risk (�5%) No change 19,936 (99.11%)

Low-risk (<5%) 0.29% 7.90% Up classification 68 (0.34%)

High-risk (�5%) 1.41% 3.59% Down classification 111 (0.55%)

Abbreviations: FRS = Framingham Risk Score, KM = Kaplan Meier

This table shows the distribution of the 20,115 individuals with and without events in the MORGEN-cohort across risk categories. Individuals with and

without events were classified according to their 10-year absolute risk to develop a fatal cardiovascular disease event with the Framingham Risk Score

and selected subgroups expected to benefit were reclassified by SCORE-low. The bottom rows show the observed 10-year Kaplan-Meier absolute risk

estimates for all individuals (with and without events).

doi:10.1371/journal.pone.0114020.t003
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correctly and incorrectly reclassified individuals within this group. Choosing this strictness will
be a trade-off between improved reclassification and the costs of the new biomarker.

The results of the cluster analyses may be used in many ways to select individuals for inclu-
sion or exclusion of the new test or biomarker. Here, we chose to simply base our selection on
the ranges of risk factor values in the relevant subgroups. Further optimization of the selection
process might still be possible and could result in a larger NRI. Finally, we assessed the perfor-
mance of our tailored approach using the NRI, while more informative alternatives may be
available [13]. However, for other measures of compared performance we expect tailoring
would still result in improved health effects at reduced costs.

The empirical example
In our illustration, where individuals from the large Dutch MORGEN cohort were classified by
the (recalibrated) FRS and reclassified by SCORE-low, the reclassification table (including the
observed risks, table 3) and NRI of 0.051 may have suggested replacement of the FRS for, in
this case, the entire Dutch population. Inspection of the reclassification tables showed that re-
classifications mainly consist of a group of individuals being correctly reclassified downwards
and incorrectly reclassified upwards. When additionally evaluating which individuals benefit
from the application of SCORE-low, identifying subgroups among the correctly reclassified in-
dividuals, using cluster analysis, could further characterize these individuals.

Furthermore, it was demonstrated that the characterizations of the correctly reclassified
subgroups of individuals can be used to select individuals who are expected to benefit from a
new prediction model. Replacing the (recalibrated) FRS with SCORE-low in only those individ-
uals expected to benefit slightly increased the NRI within the events and within the non-events,
while at the same time reducing the implementation burden by 87.7%. In this particular exam-
ple the benefits of tailored implementation may be limited, as the application of SCORE-low
instead of the FRS does not result in a large implementation burden through costly or invasive
measurement of additional risk factors. In general, however, tailoring the implementation of
extended prediction models including an expensive or invasive test to those individuals ex-
pected to be correctly reclassified with such a test would improve the cost-effectiveness of these
prediction models compared to addition of the test for everyone, which may not even be (cost-
)effective as a result of the large number of non-beneficial tests performed [44–47].

Although the empirical example shows two risk categories, the presented tailoring approach
is easily extendable to multiple risk categories. Commonly, there is agreement about what treat-
ment (if any) should be provided to individuals at low or high risk, while there is uncertainty
about the treatment strategy for those at intermediate risk. Therefore, additional tests are often
provided to intermediate-risk individuals only, as these might benefit by being reclassified to
the low or high-risk category, offering them valid and appropriate treatment. Nevertheless, the
intermediate risk category often comprises a large and heterogeneous group of individuals, not
all of whom will actually benefit from additional tests and some of whommay even be reclassi-
fied incorrectly, resulting in a substantial number of examples of this strategy not being (cost-)
effective [44–47]. Altogether, our method extends risk-based tailoring by selecting individuals
based on their risk profiles instead of their predicted risk, and by linking the impact of tailored
implementation to actual expected improvements in treatment decisions with corresponding
improvements in health outcomes and reductions in costs.

The relevance and application of cluster analysis
In our illustration changes in predicted risk for groups of individuals with diabetes or extreme
values of HDL-C may have been expected as these predictors are included in the FRS but not
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in SCORE-low. This will be similar for adding any other (strong) risk factor to a prediction
model. However, changes in predicted risk from both models cannot easily be estimated as
these depend on the occurrence of predictors, their coefficients and their correlation. This rules
out a-priori identification of reclassified individuals and means that only a post-hoc evaluation,
after reclassification, will be able to provide information on relevant subgroups expected to be
reclassified. Cluster analysis provides one way of structured identification of such subgroups,
but alternative methods are available as well [48–50]. For this illustration we have chosen to in-
clude in the cluster analysis only those predictors included in the two prediction models, as
these are certainly available when comparing two or more prediction models. If data on other
characteristics are available, however, that could contribute to subgroup identification, these
could be included in the cluster analysis as well.

Limitations
Performing cluster analyses additional to the estimation of reclassification measures when
comparing models, the use of many cluster variables requires relatively large groups of reclassi-
fied individuals and therefore sufficiently large IPD datasets including evidence on all predic-
tors and outcomes [35]. Furthermore, identified subgroups and their prevalence are
representative of the data they were derived from. As we propose implementing this approach
as an additional step in the development and evaluation process of prediction models (Fig. 1),
appropriate IPD will generally be available. In situations in which the groups of reclassified in-
dividuals are small, subgroup analyses may not be worthwhile, but description of the overall
characteristics of these reclassified groups, such as shown in table 2 (top rows), will still
be valuable.

As applies to many statistical approaches, also the results of cluster analyses depend on vari-
ous decisions, such as the choice of the clustering method and the number of subgroups. Ac-
cordingly, different subgroups may be identified in the same data by different researchers. This
issue can be mitigated, however, through cluster validation, ensuring a stable cluster solution
that best fits the data [25]. Cluster analysis may also classify some individuals as outliers, not
part of any subgroup. In practice this will not be a problem as only the risk profiles of relatively
large reclassified subgroups are of interest and may influence the implementation decision.
Similar to prediction modeling, subgroup characterizations should ultimately be externally val-
idated to test their generalizability and assess whether tailored implementation is beneficial in
other populations.

We have validated the entire procedure, using appropriate methods, in two steps. First, we
validated the cluster solution on its quality using the average silhouette width and on its robust-
ness through bootstrapping and calculating the Rand index, because tailored implementation
can only be considered for subgroups based on valid clusters. If, for instance, unstable clusters
are identified further investigation of the impact of tailored care based on such clusters is not
useful. Second, following cluster validation, individuals were allocated to the corresponding
subgroups, and individuals were selected in which the new prediction model is implemented.
We used bootstrapping to repeat this second step and to estimate confidence intervals of the
NRI of the tailored implementation. Another approach would be to validate the entire proce-
dure at once, capturing all potential sources of variation in all steps. However, this would mean
that a divergent number of clusters, as well as non-valid subgroups, may be incorporated.

Conclusion
When comparing two or more prediction models, or estimating the added value of new predic-
tors (e.g. biomarkers or imaging test results), we recommend to characterize the groups of
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reclassified individuals. For sufficiently large, heterogeneous reclassified groups, a straightfor-
ward application of cluster analysis can identify and characterize subgroups. Such subgroup
characterization provides additional insight into the impact of implementing a certain predic-
tion model, beyond existing reclassification summary measures and reclassification tables, and
allows tailored implementation in specific subgroups of individuals.
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